
Repeat and Predict – Two Keys to Efficient Text Editing

Toshiyuki MASUI

Software Laboratories
SHARP Corporation

2613-1 Ichinomoto-cho
Tenri, Nara 632, Japan
Tel: +81-7436-5-2468

E-mail: masui@shpcsl.sharp.co.jp

Ken NAKAYAMA

Department of Information Science
Faculty of Science

The University of Tokyo
3-8-1 Komaba, Meguro, Tokyo 153, Japan

Tel: +81-3-5478-0520
E-mail: ken@is.s.u-tokyo.ac.jp

ABSTRACT
We propose a simple and powerful predictive interface tech-
nique for text editing tasks. With our technique called the
dynamic macro creation, when a user types a special “repeat”
key after doing repetitive operations in a text editor, an editing
sequence corresponding to one iteration is detected, defined
as a macro, and executed at the same time. Although being
simple, a wide range of repetitive tasks can be performed just
by typing the repeat key. When we use another special “pre-
dict” key for conventional prediction techniques in addition
to the repeat key, wider range of prediction schemes can be
performed depending on the order of using these two keys.

KEYWORDS: Text Editing, Predictive Interface, Program-
ming By Example, PBE, Programming by Demonstration,
PBD, Keyboard Macro, Dynamic Macro Creation

INTRODUCTION
Various techniques for programming by demonstration (PBD)
and predictive user interface have been proposed to support
easy programming or to reduce the burden of doing simi-
lar operations repeatedly[2][6]. Most PBD systems are for
graphical user interfaces (GUI,) but PBD techniques for text
editors and other keyboard-based systems have also been pro-
posed. For example, Darragh’s Reactive Keyboard[3] pre-
dicts the user’s next keystrokes from the statistic information
gathered by the user’s previous actions. In Nix’s Editing by
Example system[7], users can tell the system to infer the edit-
ing procedure by showing both the text before modification
and the one after modification. The inferred procedure should
be of the “gap programming” form, which is a subset of string
substitution using regular expressions. Mo’s TELS system[5]
generalizes users’ iterative operations and infers an editing
procedure including loops and conditional branches. If the
system’s guess is wrong, users can incrementally correct it

Published in:
Proceedings of the ACM Conference on Human Factors
in Computing Systems (CHI’94) (April 1994), ACM press,
pp. 118–123.

until it does the right thing for them. Since the procedure
generated by TELS can include branches and loops, it can
perform complex tasks which cannot be done by mere string
substitutions.

Although these systems can infer complex editing operations
from examples, the procedure to perform the inference is
rather complicated and they are not suited for simple repeti-
tive tasks. In this paper, we introduce a simple and powerful
prediction technique for text editing tasks called the dynamic
macro creation, and show its applications. We also show how
this technique can be extended by using conventional simple
prediction techniques in combination.

REPEAT PREDICTION
Keyboard Macro
In many text editors, keyboard macro is used to substitute
a long sequence of operations by another single operation.
A keyboard macro is usually defined through the following
steps: first, the user tells the editor to start recording a key-
board macro; second, he types the sequence of commands
which he wants to define as a new macro; and finally, he tells
the editor to stop the recording. For example, if a user of
GNU Emacs wants to define a macro to insert a “%” at the
top of every line, he types “Ctrl-X (” to start the recording,
types “Ctrl-A % Ctrl-N” to insert a “%” at the top of the cur-
rent line and go to the next line, and type “Ctrl-X)” to stop
the recording. After the recording is finished, he can invoke
these operations by typing “Ctrl-X e.” Although keyboard
macro is a general and powerful tool for repetitive editing
tasks, it has several disadvantages. First, users have to re-
member three commands to record and invoke a keyboard
macro. Novice users do not tend to remember them just for
simplifying repetitive tasks. Second, it is not possible to de-
fine the command sequence after they are executed: that is, a
user should know that a sequence of commands is used many
times, well before he actually executes them. In reality, repet-
itive tasks are often recognized after execution. Third, since
the procedure of defining a keyboard macro is not simple, it
is not useful for short and small repetitive operations.

REPEAT

REPEAT

REPEAT

REPEAT

REPEAT

REPEAT

REPEAT

REPEAT

REPEAT

REPEAT

REPEAT

REPEAT

REPEAT

REPEAT

REPEAT

% This is a sample \TeX text file.
% The area from the first line to the end
% of this paragraph should be commented
% out using the comment character ’%.’

This is a sample \TeX text file.
The area from the first line to the end
of this paragraph should be commented
out usin g the comment character ’%.’

% This is a sample \TeX text file.
% The area from the first line to the end
of this paragraph should be commented
out usin g the comment character ’%.’

% This is a sample \TeX text file.
% The area from the first line to the end
% of this paragraph should be commented
out usin g the comment character ’%.’

(≡

(a)

(b)

(c)

(d)

)

% ^N ^A)(≡REPEAT

REPEAT

% ^N ^A % ^N ^A

% ^N ^A

%

^N ^A % ^N ^A REPEAT

% ^N ^A

REPEAT

REPEAT

REPEAT % ^N ^A %

% This is a sample \TeX text file.
% The area from the first line to the end
of this paragraph should be commented
out usin g the comment character ’%.’

% This is a sample \TeX text file.
%The area from the first line to the end
of this paragraph should be commented
out usin g the comment character ’%.’

This is a sample \TeX text file.
The area from the first line to the end
of this paragraph should be commented
out usin g the comment character ’%.’

% This is a sample \TeX text file.
% The area from the first line to the end
% of this paragraph should be commented
out usin g the comment character ’%.’

(a)

(b)

(c)

(d)

% ^N ^A %

(≡)REPEAT

(≡ % ^N ^A)REPEAT

^N ^A

^N

Dynamic Macro
We propose a simple and powerful method of creating a
keyboard macro from repetitive user operations, which we
call the dynamic macro creation method. Dynamic macro
works as follows: All the recent user operations in a text
editor is logged as a string, and when a special “repeat”
command is issued by typing a special key denoted as ,
the system looks for repetitive operations from the end of the
string. If such operations are found, they are defined as a
macro and executed. If is typed again, the macro is
executed again. For example, when a user enters a string
“abcabc” and types after that, the system detects
the repetition of “abc,” defines it as a macro, and executes
the macro, resulting in another “abc.” When the user types

again, one more “abc” is inserted. Similarly, when
a user inserts a “%” at the top of two lines by doing the same
operations twice and types after that, the operations
are defined as a macro and executed, and as a result, another
“%” is inserted at the top of the third line.

Dynamicmacro does not suffer from the shortcomings of key-
boardmacro. Users should only remember that typing
makes the system do the repetitive task once more, instead of
remembering three different operations of keyboard macro.
The macro is defined after doing ordinary editing tasks, with-
out telling the editor when to start the recording. More im-
portantly, in spite of its simple-looking appearance, dynamic
macro is applicable to great many editing situations, which
we will show in later sections by examples.

Details of the Algorithm
The actual process of detecting repetitive operations consists
of the following two strategies.

Rule1: If there exist two same consecutive sequences of
operations just before typing , define the sequence
as a macro. If there exist more than one such sequences,
take the longest one. For example, if the user types
after “abccabcc,” define “abcc” as the macro, not “c.”

Rule2: If there exists no such sequence, look for a
pattern XYX just before , where X and Y de-
note nonempty sequences of operations. If there exist
such sequences, define XY as a macro, executing only
Y for the first . If there exist more than one such
sequences, take the longest X and take the shortest Y
with that X. For example, if the user types
after “abracadabra,” take “abra” as X and “cad”
as Y , not “a” as X and “br” as Y .

With Rule2, typing after “abcdeab” makes “cde”
inserted after it, and one more makes “abcde” in-
serted. This means that users do not have to carry out the
same operations twice before typing , but they have to
do one iteration plus only the first part of the second iteration.

Examples
We here show some examples of using dynamic macro im-
plemented on GNU Emacs.

Adding Comment Characters Figure 1 shows how
works for simple tasks like adding comment characters to
consecutive lines.

Figure 1: Adding comment characters to each line.

Figure 1(a) shows the original text. When a user types
, he gets (b) 1 . If he types

here, the system detects the repetition of ,
defines the sequence as a macro (Rule1,) executes the macro,
and gets (c). Hitting another results in (d). To get this
result, the user do not have to do exactly the same operations
twice before typing . Figure 2 shows the case when a
user types after typing .

Figure 2: Adding comment characters to each line.

1 denotes the space key and denotes the Ctrl-N key. Ctrl-N
moves the cursor to the next line and Ctrl-A moves the cursor to the top of
the current line.

(insert “{\sl ”)

(search “] ” and delete it)

Recent research is said to have traced the earliest known use
of {\sl O.K.} to the @i[Boston Morning Post] of 23 March 1839. it
was not until nearly a hundred years later that, greatly helped
by radio and television, it won its present popularity in England.
It is made to serve as an adjective (@i[That’s O.K.]) and
occasionally attributive (@i[Advertising is in these days a
socially O.K. profession]); it supersedes the old formulas of assent
@i[Very well], @i[All right], and @i[Right on], ... It has bred
a jocular variant @i[Okidokey].

Recent research is said to have traced the earliest known use
of @i[O.K.] to the @i[Boston Morning Post] of 23 March 1839. it
was not until nearly a hundred years later that, greatly helped
by radio and television, it won its present popularity in England.
It is made to serve as an adjective (@i[That’s O.K.]) and
occasionally attributive (@i[Advertising is in these days a
socially O.K. profession]); it supersedes the old formulas of assent
@i[Very well], @i[All right], and @i[Right on], ... It has bred
a jocular variant @i[Okidokey].

Recent research is said to have traced the earliest known use
of {\sl O.K.} to the @i[Boston Morning Post] of 23 March 1839. it
was not until nearly a hundred years later that, greatly helped
by radio and television, it won its present popularity in England.
It is made to serve as an adjective (@i[That’s O.K.]) and
occasionally attributive (@i[Advertising is in these days a
socially O.K. profession]); it supersedes the old formulas of assent
@i[Very well], @i[All right], and @i[Right on], ... It has bred
a jocular variant @i[Okidokey].

(search “@i”)

(delete “@i[”)

(insert “} ”)

(do the rest)

REPEAT

Recent research is said to have traced the earliest known use
of {\sl O.K.} to the {\sl Boston Morning Post} of 23 March 1839. it
was not until nearly a hundred years later that, greatly helped
by radio and television, it won its present popularity in England.
It is made to serve as an adjective ({\sl That’s O.K.}) and
occasionally attributive (@i[Advertising is in these days a
socially O.K. profession]); it supersedes the old formulas of assent
@i[Very well], @i[All right], and @i[Right on], ... It has bred
a jocular variant @i[Okidokey].

Recent research is said to have traced the earliest known use
of {\sl O.K.} to the {\sl Boston Morning Post} of 23 March 1839. it
was not until nearly a hundred years later that, greatly helped
by radio and television, it won its present popularity in England.
It is made to serve as an adjective (@i[That’s O.K.]) and
occasionally attributive (@i[Advertising is in these days a
socially O.K. profession]); it supersedes the old formulas of assent
@i[Very well], @i[All right], and @i[Right on], ... It has bred
a jocular variant @i[Okidokey].

REPEAT

}

^S @

DEL

i ESC

DEL ^D

{ \ s l

^S] ESC DEL

(search “@i”)^S @ i ESC

(a)

(b)

(c)

(d)

(e)

REPEAT

% ^N ^A

REPEAT

REPEAT

REPEAT

;*** (factorial n)
;*** ------------------------------------
;*** <perspicuous description here>
;***
(define (factorial n)
 (if (<= n 1) 1 (* n (factorial (- n 1)))))
;*** (halts f)
;*** ------------------------------------
;*** <perspicuous description here>
;***
(define (halts f)
 (....))

(search “(define ”)

REPEAT

(save the string from there to EOL into temporary buffer)
(insert “;*** ” above)
(insert the contents of temporary bufer)
(insert “;*** --- ... ;*** ”)
(search “(define ”)

(define (factorial n)
 (if (<= n 1) 1 (* n (factorial (- n 1)))))
(define (halts f)
 (....))

(a)

(b)

REPEAT

REPEAT

REPEAT

REPEAT

REPEAT

REPEAT

Figure 3: Changing formatting directives. (Example taken from [7].)

In this case, since no sequence of operations is executed twice
before , the system searches the patternXYX and gets

for X and for Y (Rule2.) Then the system
executes Y and gets (c). One more makes the system
execute both X and Y , and results in (d).

In this way, the user gets similar results by typing
at any moment while he is doing repetitive operations. This
means that users do not have to care when to type .

Pattern Search and Replace Here we show a more com-
plex example presented in [7]. The objective here is to sub-
stitute all the occurrences of “@i[text]” (Scribe’s directive

Figure 4: Adding comment lines to Lisp Functions.

for Italic) in Figure 3(a) by “{\sl text}” (TEX’s directive
for Italic.) With Nix’s system, a user shows the system both
the text before modification (e.g. “@i[O.K.]”) and the
one after modification (e.g. “{\sl O.K.}”,) and the sys-
tem infers the substitution operation. In our system, a user
can do the job by typing after doing slightly more
then one iteration of the substitution operations. (See Fig-
ure 3.) Unlike Nix’s system, the user do not have to per-
form any extra operations to the system except typing
several times after ordinary text substitution procedure.

Adding Comment Lines to Each Function We show another
example that also appeared in [7]. The job here is to add
several comment lines above every function definition of
Figure 4(a). This is done by long steps of operations, but
typing after doing the first part of the second iteration
results in (b), and more will add similar comment
lines to the following function definitions.

Advantages of Dynamic Macro
The advantages of dynamic macro is as follows. First, it is
simple to use. Users only have to remember that they can
type to make the system do their repetitive chore.
They can type at any moment during the repetitive
operations, and they do not have to tell the system to start or
stop recordings. Second, it is powerful. As we have shown in
previous examples, dynamic macro works well for a variety
of simple to complex repetitive tasks where only keyboard
macro was applicable. Third, it is easily implemented. The
system should just keep the log of recent user actions for the

REPEAT

REPEAT TAB

TAB a b c RET TAB TAB

TAB

a b c RET REPEAT

PREDICT

REPEAT

PREDICT

PREDICT

PREDICT

pred

predator

PREDICT
pred.c

PREDICT

predecessor

PREDICT

PREDICT

PREDICT REPEAT

REPEAT

PREDICT

REPEAT

REPEAT TAB TAB TAB a b c

RET TAB TAB REPEAT

a b c RET

TAB

REPEAT

<TAB><TAB>abc
<TAB><TAB>

REPEAT

PREDICT
<TAB><TAB>abc
<TAB><TAB><TAB>

REPEAT

<TAB><TAB>abc
<TAB><TAB><TAB><TAB>

<TAB><TAB>abc
<TAB><TAB>abc

REPEAT

<TAB><TAB>abc
<TAB><TAB>abc
<TAB><TAB>abc

PREDICT

name system prediction source
dabbrev Emacs strings in the document
completion Emacs filenames, etc.
“.” vi last command
“!!” csh last command
“!(string)” csh command history
“ESC l” tcsh filenames
dynamic macro (Emacs) repetitive keystrokes
Reactive Keyboard shell keystroke statistics

Figure 5: Comparison of popular predictive interfaces.

implementation of dynamic macro 2 . Forth, it does not inter-
fere with users in any sense. Logging user actions is an easy
task for most systems and it does not slow down the appli-
cation. Nothing happens unless users touch . Finally,
it is general in that any system with keyboard interface can
adopt this technique.

Limitations of Dynamic Macro
Dynamic macro is just a syntactic prediction technique, and
cannot generalize any rule from the user input, nor can do
any semantic prediction from the context or other information
around. Furthermore, although dynamic macro predicts right
inmost cases, it sometimes guesses differently from the user’s
expectation. For example, if a user types after

, Rule1 applies and another
is executed, which may be different from the user’s ex-

pectation of 3 . If a user types after
“abracadabra ab,” expecting “racadabra ,” Rule2
applies and only “ra ” appears, since the pattern XYX
matches “ab/ra /ab,” not “ab/racadabra /ab.” Since
dynamic macro is a prediction technique, it is not possible to
make a prediction rule which always fit to every user’s ex-
pectation. However, these problems can be solved by adding
a new key for prediction, denoted as . We show how
this scheme works in the next section.

USING DYNAMIC MACRO WITH CONVENTIONAL PRE-
DICTION TECHNIQUES
In this section, we show how we can use dynamic macro with
simple conventional prediction techniques.

Conventional Prediction Techniques
Many kinds of simple prediction techniques are used in popu-
lar text editors and other interactive programs. For example,
“shell” programs on UNIX have the “history” facility, which
allows users to re-execute one of the formerly-issued com-
mands by typing “!” and the abbreviation of the command.
GNU Emacs providesdabbrev function, which expands the

2GNU Emacs is always keeping a list of 100 recent keystrokes and it can
be read by recent-keys function.

3It is not a good idea to make Rule2 have higher precedence than Rule1,
though, since after “bab long-forgotten-sequence abab” would
execute the forgotten sequence instead of another “ab.”

substring entered by the user into a full string in the same doc-
ument which begins with the same substring. Figure 5 shows
some of the prediction techniques popular to UNIX users,
along with dynamic macro and the Reactive Keyboard[3].

Many of the prediction techniques are functionally equivalent
in that they predict the next string from domain-specific dic-
tionaries and other available information. In this sense, using
only one “prediction key,” or , is usually enough for
the prediction, instead of using different keys corresponding
to each prediction scheme. Figure 6 shows a sample usage
of using filenames and an English dictionary as the
prediction source.

Figure 6: Prediction with filenames and English dictionary.

The semantics of is as follows: If it is pressed for
the first time, predict the next string which is most probable
at the context. If is pressed again, undo the previous
prediction and show a new candidate to the user.

Using Prediction Key with Repeat Key
If we use with in combination, not only the
problem of dynamic macro shown in the last section is solved,
but more sophisticated prediction can be performed.

The most serious problem of dynamic macro is that users can-
not do anything when the prediction by was not what
they expected. However, using , users can try dif-
ferent candidates whenever the prediction by was an
unexpected one. As we have shown in the previous section,

predicts after typing
, applying Rule1. But typing another

can change the prediction scheme and make Rule2 active,
and next candidate, , is predicted instead,
undoing the last prediction of . If this prediction is the
one in the user’s mind, the user can then type more
to go on the prediction. (See Figure 7.)

Figure 7: Changing the prediction scheme using .

PREDICT REPEAT

REPEAT

abracadabra ab

abracadabra abra abracadabra abracadabra

abracadabra abracadabra \
abracadabra

REPEAT

abracadabra abra abra

PREDICT

REPEAT

PREDICT

REPEAT

REPEAT PREDICT

PREDICT REPEAT

6 7 8 9
PREDICT

REPEAT

6 7 8 9 :

PREDICT

6 7 8 9 10
PREDICT

6 7 8 9 A

6 7 8 9 : ;

REPEAT REPEAT

6 7 8 9 10 11 6 7 8 9 A B

(ASCII order)

(decimal order) (hexadecimal order)

PREDICT

REPEAT

PREDICT PREDICT

REPEAT

PREDICT

PREDICT REPEAT

REPEAT

\begin{document}
\section{}
\section{}
\end{document}

\begin

PREDICT

REPEAT

PREDICT

\begin{itemize}
\end{itemize}

\begin{document}
\end{document}

\begin{itemize}
\item
\end{itemize}

REPEAT

\begin{itemize}
\item
\item
\end{itemize}

REPEAT

\begin{document}
\section{}
\end{document}

REPEAT

PREDICT

REPEAT PREDICT

REPEAT

PREDICT

S most probable
prediction scheme

p P(S,C)
r R(S,C)
execute p

S
p P(S,C)
r R(S,C)
execute p

REPEAT PREDICTNot after or

REPEAT

PREDICT p P(S,C)
r R(S,C)
execute p

S next probable
prediction scheme

undo p

execute p

P,R: prediction functions

rp

C: current context
SP1,SP2,SR1,SR2: prediction states

SP1 SP2

SR1 SR2

REPEAT PREDICTAfter or

dynamic macro
P

R

R
R

R

PPP

R

P

PREDICTandREPEATActions taken by

Key

S: prediction scheme
p,r: sequences of operations

REPEAT PREDICT

PREDICT REPEAT

PREDICT

Figure 8 shows the solution to the other example shown in
the last section. In this case also, the user can tell the system
his expectation by typing after made a wrong
guess.

Figure 8: Changing the prediction scheme using .

We can go further by extending the semantics of
as follows: if it is pressed after or , execute
the same prediction scheme again; otherwise, predict the
next string using the dynamic macro technique. With this
extension, users can first select the prediction strategy using

, and then apply it repeatedly by . Figure 9
shows an example of using this technique.

Figure 9: Select and repeat prediction strategies.

Here, the first sets the prediction scheme to “ASCII
order,” and predicts “: ”. If it is what the user wants, the user
can type to continue the prediction under the same
prediction scheme and gets “; ”. If it is not, the user can
type again after the first , set the prediction
scheme to “decimal order,” and get the next candidate “10 ”,
and so on.

We can go even further to extend the meanings of
and , and use them as mode-specific prediction keys
which correspond to quantitative and qualitative prediction,
respectively. Figure 10 shows how and can
be used when writing LATEX documents with this kind of
extension.

First, the system predicts “{itemize}...” from the current
context ending at “\begin,” setting the prediction scheme
to “LATEX-itemize.” If the user types just after that,
the system generates “\item,” from the knowledge that it

Figure 10: Qualitative and quantitative prediction.

is currently in the LATEX-itemize mode. If it is not the user’s
intention, he can type again, setting the prediction
scheme to “LATEX-document.”

All together, the functions of and are shown
in Figure 11. When is pressed, the system goes
to state SR1 and dynamic macro is executed. If
is pressed there, the system goes to state SP2, undoes the
last prediction, and performs another new prediction. Vari-
ous other prediction schemes can be tried based on the state
transition shown in Figure 11.

Figure 11: Actions by and .

Advantages of Using Prediction Key and Repeat Key
Advantages of using along with is as follows.
First, unexpected-prediction problem of dynamic macro can
be solved. Second, a variety of prediction techniques can
be applied by using only two keys. Third, the meanings
associated to the two keys are simple and familiar to current
users of text editors. Users of Japanese editors and word
processors are especially familiar with this kind of prediction
techniques, since Japanese characters are usually “predicted”
from ASCII keystrokes using -like conversion keys
on almost all the Japanese editors and word processors.

REPEAT PREDICT

REPEAT

REPEAT

PREDICT

DISCUSSIONS
Usability Test
Our system has been used and tested by our colleagues for
more than one year, and now it is gradually spreading among
the Emacs users community. We have asked some of the
users to log their activities related to and , and
got the following results.

� The “hit ratio” of dynamic macro varies from person
to person. The highest ratio was 100%, which was
achieved by a user who uses only occasionaly
(five times a month) and very deliberately. The average
ratio was around 85%.

� The average length of the predicted keystrokes was
about 5, while the most frequent length of the pre-
dicted keystrokes was between 3 and 4. This shows
that dynamic macro is basically useful for short repeti-
tive keystrokes, while keyboard macro is good for longer
sequences.

� Real Emacs experts do not use dynamic macro very of-
ten. This is because they already know many special
functions corresponding to frequently-used small repet-
itive tasks like inserting comments, indentation, etc. On
the other hand, most non-expert users (including the au-
thors) like the interface and are using it for everyday
editing tasks.

Requirements for Predictive Interface
We believe that any predictive interface technique should
satisfy the following requirements:

1. Extra operations for prediction should be minimal.

2. Predictions should be correct in most cases.

3. Users who do not use predictive features should not
suffer from its existence.

4. Predicted interface should not make users feel uneasy
because of its wrongdoings.

We use only two keys, which is minimal. Just as shown in
our usability test above, the hit ratio of the prediction is high
enough. The system does nothing other than taking a log
unless prediction keys are pressed, and it does not interfere
with users. With our implementation on GNU Emacs, users
can issue an undo command at any time to get back to the
original state whenever they find something is going wrong
because of the unexpected prediction.

System Notification
Some predictive systems notify the user when they can pre-
dict the user’s next action. KeyWatch[4] generates a beep
sound when it finds repetitive user actions. The Reactive
Keyboard[3] always shows a candidate of next user action
on the command line. Eager[1] displays a special icon when
it detects repetitive user operations. In contrast to these sys-
tems, our system does not notify anything, because system
notification is often a nuisance rather than a help for everyday
users.

Macro Definition and Execution
The reason why dynamic macro requires only one key is that
macro definition and execution are done at the same time. In
many predictive systems, macro definition and execution are
separated and users can edit the definition before execution.
Although this technique is preferred for more complex sys-
tems, we did not take this approach because the prediction
by dynamic macro is correct in most cases. One reason for
this is that we implemented dynamic macro on GNU Emacs,
where different meanings are bound to different keystrokes.
In Emacs, the keystrokes for going to the top of a line is differ-
ent from the keystrokes for going to the left. This condition
does not hold for conventional GUI, where systems cannot
distinguish absolute mouse motions from relative ones. Sun
Microsystem’s Textedit system has an “Again” button, using
which all the key sequences after the last mouse operation
until pressing the button are executed again at the current
mouse position. Just like dynamic macro, this can be seen
as an implicit definition of keyboard macro. However, it is
not as powerful as our system, since users still have to care
when and where to start recording the macro, and the func-
tions provided by the editor are much less powerful than those
provided by GNU Emacs.

CONCLUSIONS
We proposed a simple and powerful predictive interface
technique for editing texts using only two keys,
and . Although being simple, our technique covers
a wide area which was formerly covered by keyboard macro
and other predictive interface techniques. We like to apply
this technique to wider areas other than text editing tasks.

ACKNOWLEDGEMENTS
We thank Makoto Tawada of Nagaoka University of Tech-
nology, Nobuhiko Funato, Yuji Ichikawa and Akira Imai of
SHARP Corporation for giving us valuable comments to our
system.

REFERENCES
[1] Cypher, A. Eager: Programming repetitive tasks by example.

In Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI’91) (April 1991), Addison-Wesley,
pp. 33–39. also in [2].

[2] Cypher, A., Ed. Watch What I Do – Programming by Demon-
stration. The MIT Press, Cambridge, MA 02142, 1993.

[3] Darragh, J. J., Witten, I. H., and James, M. L. The Reactive
Keyboard: A predictive typing aid. IEEE Computer 23, 11
(November 1990), 41–49.

[4] Micro Logic Corp. KeyWatch. POB 70, Hackensack, NJ
07602, 1990.

[5] Mo, D. H., and Witten, I. H. Learning text editing tasks from
examples: a procedural approach. Behaviour & Information
Technology 11, 1 (1992), 32–45. also in [2].

[6] Myers, B. A. Demonstrational interfaces: A step beyond direct
manipulation. IEEE Computer 25, 8 (August 1992), 61–73.

[7] Nix, R. P. Editing by example. ACM Transactions on Program-
ming Languages and Systems 7, 4 (October 1985), 600–621.

