
Real-world Programming

Toshiyuki Masui

Sony Computer Science Laboratories, Inc.
3-14-13 Higashi-Gotanda

Shinagawa, Tokyo 141-0022, Japan
+81-3-5448-4380

masui@csl.sony.co.jp

ABSTRACT
Although more and more computing is performed away from
desktop computers, most programs used in handheld comput-
ers, ubiquitous computers, and augmented-reality systems in
the real world are still developed on desktop computers, and
users of these systems cannot modify the behavior of the sys-
tems or make a new program for the systems without using
desktop computers. Programs used in real-world environ-
ments should also be programmed in the real world, so we
have developed a new programming paradigm, “Real-World
Programming (RWP),” which enables users to make pro-
grams for handling real-world environments as well as data
in computers. By combining simple hardware and software,
users can specify actions and conditions and create programs
in the real world without using desktop computers. In this pa-
per we describe the features required for RWP, programming
techniques for RWP, useful devices for RWP, and examples
of RWP.

KEYWORDS: Real-world Programming, Real-world Inter-
face, Augmented Reality, FieldMouse

INTRODUCTION
More and more computing is being performed away from
desktop computers and in real-world environments, and var-
ious interaction techniques which support off-the-desktop
computing have been developed.Ubiquitous Computing[10]
is an early example of off-the-desktop computing, where
users interact with many computers scattered in the real-world
environment.Augmented Reality[2] or Enhanced Reality is
an approach to add information in computers to real-world
objects in order to enable users handle more information than
they can see with their eyes.Tangible Bits[5] is a term for
making all the information in the computer “tangible” and
controlled by users using real-world objects.

The concept common to these techniques is that (1) interact-
ing with real objects in the real-world environment is in many
cases much more appropriate than handling information on
a computer display using general-purpose input/output de-

vices of desktop computers, and that (2) integration of real-
world data and data in the computer is very important. Since
there are so many approaches in this direction and it is diffi-
cult to classify existing approaches strictly into one of these
categories, we call these techniques “Real-World Interface
(RWIF)” systems as a whole. We expect that RWIF sys-
tems are going to become more and more popular, and in
the near future, special terms like Ubiquitous Computing and
Augmented Reality will not be used, since they will be so
common.

Although users can handle real-world objects in current RWIF
systems, programming them is usually performed on com-
puters which are separate from the RWIF environment. For
example, if a user wants to make a program to ring an alarm
bell at 7:00, he has to use symbols both for the alarm and for
the time, and issue a command like below:

% echo ’play beep.wav’ | at 7:00am

The command names, file names, and device names are
used for the computer’s convenience, but not for the user’s,
even though controlling and programming real-world objects
should be as easy as using RWIF systems.

On the other hand, people can program analog alarm clocks
easily without using symbols or a computer. When program-
ming an alarm clock, users can easily imagine the movement
of the hands in the future and set the alarm hand to the po-
sition representing the future time. Users can also check if
the program is correct or not just by moving the hands of the
clock to their future position. Programming the alarm clock
is much more direct and intuitive than programming it indi-
rectly by using texts and symbols. In this way, programming
an RWIF system by only using real-world objects is much
more intuitive than making programs with texts and symbols
which represent real-world objects.

We propose a programming paradigm, “Real-World Pro-
gramming (RWP),” that enable users to create RWIF pro-
grams by only using real-world objects and handheld/ubiquitous
devices.

REAL-WORLD PROGRAMMING
Listed below are some typical cases where RWP is suitable.

� Ring an alarm at 7:00.



� Turn off the TV when the telephone rings.
� Change the time zone automatically when traveling.
� Display a train timetable when the user approaches a train

station at night.
� Open a text file in an editor when a user puts a paper

document on the desk.
� If a packet is delivered when nobody is at home, tell the

delivery person to take it next door.
� If the captured image of a mountain turns white, download

the ski information of the area.
� Remind the user to post a letter when the user gets close to

the post office.
� Remind the user to buy a present when the person’sspouse’s

birthday is getting close.
� Print a message when an important e-mail message is re-

ceived.

Characteristics of Real-world Programming
Matching between programming elements and programmed
objects In text-based programming languages, most of the
data handled in the program are represented as numbers or
strings, and the representation of the program is close to the
representation of the data handled in the program. A typical
example of this kind of language is the famous C program
shown below, where both the program text and the data are
represented as a string.

printf("Hello, World!\n");

There is no problem when the representation of the program
is the same as the representation of the data like the case
shown above, but if the representation of the program is very
different from that of the data, the mismatch between them
causes problems.

For example, a program to draw a blue rectangle in a text-
based programming language usually looks like this:

glColor3f(0.0,0.0,1.0);
glRectf(0,0,100,100);

There is a big difference between the representation of the
program text shown above and the actual shape of a blue
rectangle.

On the other hand, it is much easier to understand the behavior
of the program if the blue rectangle is directly specified in the
program by using a graphical editor or an “interface builder,”
because the representation of the program and the representa-
tion of the data are almost the same. Visual languages and 2D
drawing tools are therefore much more suitable for handling
graphical data.

Th ese observations indicate that using real-world objects for
making RWIF programs is much better than making programs
with text-based languages.

Concreteness Real-world objects can be handled directly
in real-world programs, without assigning names or symbols
to them. On the other hand, by using a text-based language

to make a program for copying data from a VCR to a TV,
programmers have to use symbols to represent them like
below:

% videocopy VCR2 TV1

In this case, users have to remember that the name of the
VCR is “VCR2,” the name of the TV is “TV1,” and the name
of the command is “videocopy.”

Users do not have to remember these symbols if TVs and
VCRs are connected by cables and the directions of signals
are apparent. RWP should support this kind of concreteness.

Resemblance to PBE Using real-world objects for pro-
gramming is similar to making programs with “programming
by example” (PBE) techniques. PBE is a technique to cre-
ate programs only by specifying example data or operations,
and a variety of researches on PBE have been done so far[4].
Some PBE systems only record conditions and actions from
examples and define macros. Others infer a user’s intentions
from example data given by the user. Some systems even cre-
ate programs with loops and condition statements only from
various examples.

PBE resembles RWP in that only concrete data are used to
create programs, instead of using abstract instances like con-
trol structures and variables. PBE techniques enable simple
abstract program elements like loops, condition statements,
and variables to sometimes be safely inferred from examples.

Using real-world objects to specify complex data Using real-
world objects and surrogates is sometimes more convenient
for specifying complex data and conditions than using text-
based programming languages. For example, using a text-
based programming language, it would be difficult to make a
PDA program for displaying a train timetable when the user
gets close to a station. This is because it is not easy to specify
the condition “close to a station” by using conventional text-
based programming languages. On the other hand, using
a map to specify the area close to a station is much easier,
because the area can be specified just by drawing a line around
the station on the map. In this way, it is sometimes much
easier to make programs to specify data and conditions by
using real-world data and their surrogates.

REQUIREMENTS FOR REAL-WORLD PROGRAMMING
Various new interaction techniques and software techniques
are important for RWP.

Interface Idioms for Real-world Programming
Many user interface “idioms” have been invented since the
first computer was operated by a user. A user interface idiom
is a set of control operations which may seem strange at a
first glance but is easy to remember and hard to forget once
users get used to it[3]. In command line languages, typing
the return key to confirm the invocation of a command is a
well-established idiom. On recent personal computers, many
idioms like “clicking a button” and “dragging an icon” are
remembered by users and are widely used in various graphical
user interface (GUI) systems.



Since RWIFs are relatively newer than command language
interfaces and GUIs, almost no idioms for them exist. In
many RWIF systems, barcodes are used to represent data or
initiate commands. However, unlike icons, a barcode looks
only like a set of stripes and does not usually mean anything
to the human eye. They should be properly designed so that
they can afford users to perform actions which are appropriate
to the object with the barcode.

In the IconSticker system[9], a graphical icon is printed on a
sticker as well as a barcode so that users can use the barcode
just like users can use icons on the computer desktop. This
can be regarded as a way to reuse the idioms, but more idioms
which fit to RWIF and RWP should also be investigated.

Getting data for RWP
A real-world program should consider the context of the en-
vironment (e.g., time and location) and know the status of
real-world objects. To identify real-world objects, various
sensors and recognition techniques can be used. The easiest
way at the moment may be to use printed barcodes on the ob-
jects, but putting tags like RFID (radio-frequency identifier)
tags and others are also possible. Using existing barcode IDs
like ISBN and UPC codes is often very convenient because
they are already ubiquitous.

To tell the location of the user, GPS and cellular phone can
be used. A telephone number can also be used as a location
ID, if a phone directory database is available.

Programming Elements
Programming elements like conditional statements and loops
are very important in computer programs, but in most sim-
ple real-world programs, the programming elements shown
below are also very important.

Using surrogates for real-world objects When a real-
world object is difficult to handle in a real-world program,
a surrogate can be used for the programming. For example,
users can use a map to specify a location instead of actually
going there, or use a picture or a namecard to specify a per-
son instead of actually meeting him. Abstract programming
elements like a variable or a loop can also be specified by
using surrogates. Ishii is proposing the usage of “Phicons”
(Physical Icons) as surrogates[5]. Phicons are miniatures of
real objects, and they work as controllers for RWIF systems
as well as representatives of real-world objects.

Real-world Pattern Matching Text pattern matching is one
of the most frequently used functions in a program for han-
dling texts. For example, “/pattern/”, a pattern matching
operator, is one of the most frequently used operators in Perl
programs.

Similarly, real-world pattern matching is an essential part of
real-world programs. Operators for matching real-world con-
ditions include matching time, location, weather, etc. Real-
world conditions can be specified either by using symbols
(e.g., “133.2345E 35.3411N”), using the object itself (e.g.,
going to a place to specify the location), or using the surro-
gates (e.g., using a map to specify the location).

NEW DEVICES FOR REAL-WORLD PROGRAMMING

Various low-cost input/output devices can be used for RWIF.
Input devices like mouses, video cameras, and barcode read-
ers can be used as sensors to convert real-world data into
computer data, and output devices like color printers can be
used to convert data in computers into real-world objects.
In this section, we introduce two new ways of using these
devices for RWIF.

FieldMouse

A FieldMouse is a combination of an ID detection device and
a motion detection device. The first device can be a barcode
reader, an RFID tag reader, etc., and the second device can
be a mouse, a gyroscope, an accelerometer, etc. Using a
FieldMouse enables various GUI tools like buttons, menus,
and sliders to be used on any surface and objects, just like
using a mouse on a desktop computer. Users can control or
program various information appliances as easily as using
graphical terminals[8].

We have been developing various combinations of these de-
vices. Figure 1 (FieldMouse#1) is a pen-type FieldMouse
which consists of a barcode scanner and a pen-mouse. Fig-
ure 2 (FieldMouse#2) is a combination of a pen-type barcode
scanner and a mouse with a gyroscope.

Figure 1: FieldMouse#1: Combination of a barcode
reader and a pen-mouse.

Figure 2: FieldMouse#2: Combination of a barcode
reader and a gyro-mouse.



1
2
3
4
5
6
7
8
9
0
1
2
8

Figure 3: FieldMouse#3: PalmIII PDA including a laser
scanner and a tilt sensor.

Figure 3 (FieldMouse#3) is a combination of a PDA, a laser
scanner, and a tilt sensor. FieldMouse#3 is based on Symbol
Technology’s PDA SPT15001, which is a combination of a
small laser barcode module and 3Com’s PalmIII PDA. At
the back of the print board of SPT1500, we put a tilt sensor
chip ADXL202 by Analog Devices2 and connected it to one
of the unused pins of CPU3, so that SPT1500 can detect its
angle relative to the horizon. ADXL202 can detect two tilt
directions, so the CPU on FieldMouse#3 can tell how much
it is tilted from its horizontal position.

A FieldMouse can use the barcode reader to tell what it is
pointing at and where it is pointing, and it can measure the
relative movement of the device after detecting the barcode.
Fortunately, many GUI widgets are based on point-and-drag
operation and require only these information for interaction,
and they can easily be simulated by the FieldMouse. For
example, a barcode symbol can be used like a pulldown menu
by using the amount of movement for selecting items. If the
system interprets the amount of the relative movement as an
analog value, it works just like a slider or a scroll bar.

RWGUI operations with a FieldMouse are very similar to
GUI operations using a mouse. Table 1 compares using a
mouse and using a FieldMouse when manipulating a menu.
To use a menu or a slider, a user first moves the FieldMouse

FieldMouse Mouse
Move the FieldMouse to a
barcode

Move the mouse cursor to
the menu title

Click a button to initiate
recognition

Click the mouse button

Wait until the barcode is
recognized
Move the FieldMouse
from the barcode

Drag the mouse cursor

Release the button Release the mouse button

Table 1: Comparison of using a mouse and using a
FieldMouse for selecting a menu item.

Figure 4: An example origami phicon.

Figure 5: A picture with an ID.

to a barcode, clicks a button to initiate the scanner, waits
until the barcode is recognized, moves the FieldMouse and
releases the button. Since barcodes are usually recognized
instantly, there is almost no time lag in the recognition step,
and users feel little differences between using a mouse and
using a FieldMouse to operate a menu or a slider.

Barcodes have been used for many years in industries, and
small, reliable, and inexpensive barcode readers are widely
available. Mouse and motion sensing devices are also widely
available, so a FieldMouse can be very easily constructed.

Dynamic Creation of Surrogates
Using phicons is usually not very practical, because creating
them usually takes time and there is no good way to save many
phicons. However, if folded paper is used instead of plastic
or wooden phicons, dynamic creation of phicons becomes
possible.

The technique known as “Origamic Architecture” can be used
to create papercraft phicons very easily just by cutting part of
a printed paper and folding it. These “Origami Phicons” can
very easily be unfolded back into a sheet of paper, so many
phicons can be preserved just like papers can.

If surrogates do not have to be in a 3D shape, cards and
stickers can be used as surrogates by simply printing icons or
pictures on them (Figure 5).

1http://www.symbol.com/palm/
2http://products.analog.com/products/info.asp?product=

ADXL202
3This technique and schematics are described in:

http://www.ibr.cs.tu-bs.de/~ harbaum/pilot/adxl202.html



EXAMPLES OF REAL-WORLD PROGRAMMING
In this section, we show several examples of RWP using the
software and hardware techniques described above.

Programming a context-aware PDA
A user can program a PDA to display the train timetable when
he gets to the train station at night, by either of the following
methods.

Specifying the condition explicitly We assume that the PDA
has the macro definition feature and a condition/action pair
can be programmed.

� Put the PDA into macro-definition mode.
� Specify the condition “at night” using the face of a clock.
� Specify the condition “close to the station” either by going

to the station or using a map around the station.
� Open the timetable on the PDA to specify the action.
� Finish the macro definition mode.

In this way, a real-world macro can be programmed without
using text-based programming languages, as easily as defin-
ing a keyboard macro in a text editor.

Programming a PDA by examples If a user always opens
the timetable when he gets close to the station at night, the
system can automatically infer the user’s intent and make an
appropriate real-world program from the examples. Various
techniques for automatic program creation and macro defi-
nition have been proposed, and a very simple approach like
Dynamic Macro[6] would work for the purpose.

Programming a VCR
Almost everyone can use a VCR to play a videotape fairly
easily, but many people have problems programming VCRs.
On the other hand, most people can “program” an alarm clock
to ring the next morning.

One of the reasons why programming a VCR is difficult and
programming an alarm clock is easy is that programming an
alarm clock is much more direct than programming a VCR.
When programming an alarm clock, users can easily imagine
the movement of the hands of the clock in the future, and
they can easily set the alarm hand to the future position to set
the alarm. On the other hand, when programming a VCR,
operations for selecting channels and specifying recording in
the programming mode are different from the normal opera-
tions for selecting channels, and checking if the the VCR is
programmed correctly is not straightforward.

Using the direct programming approach of real-world pro-
gramming shown below makes programming a VCR as easy
as setting an alarm clock.

� Put the clock of the VCR forward to a future time/date, thus
automatically setting the VCR to the programming mode.

� Select a channel by normal operations.
� Push theREC button to specify start recording.
� Put the clock further forward to the time/date when the

VCR should stop recording.
� Push theSTOP button to specify the stop operation.
� Put the clock back to the current time, thus automatically

setting the VCR to normal (non-programming) mode.

Figure 6: Controlling AV systems by using paper with
printed pictures and barcodes.

This method allows users to specify the channel and record/stop
operations by using the same buttons used for normal opera-
tions; in other words, they do not need to use special buttons
for programming. Moreoer, users can check the program-
ming status easily by simply putting the clock forward again.

Programming Data Transfer Between VCRs
In the near future, most audio/visual appliances will be con-
nected by a single network cable instead of using many cables
for each audio/video signal. This will reduce the number of
cables, but will make setting and understanding the data flow
difficult and confusing. For example, if you have two VCRs
and want to copy data from one to the other, somehow you
have to specify the source and the destination and invoke a
command like below:

% videocopy VCR1 VCR2

This procedure is very cumbersome since you have to (1) use
another device to initiate the copy operation, (2) assign names
to each VCR, (3) remember the names of each VCR, (4)
remember the name of the copy command, and (5) remember
whether the first argument of the command is the source or
the destination.

When programming a VCR, it is much easier to tell the in-
tention of the user by using the VCRs themselves or their
surrogates instead of by using names and symbols. Using
the FieldMouse, VCRs can be programmed easily by the
following operations.

� Scan the barcode on the source VCR and tilt the FieldMouse
upward to specify that this VCR is the source of the data
transfer.

� Scan the barcode on the destination VCR and tilt the Field-
Mouse downward to specify that this VCR is the destination
of the data transfer.

Using a panel on which surrogates are printed can specify
the same operation even easier than by actually scanning the
VCRs (Figure 6).



FUTURE DIRECTIONS
Many problems must be solved before RWP is accepted by
people and becomes widely used in RWIF systems.

RWP Idioms
Unlike GUI, there are no interface idioms for RWP at the
moment. Many GUI idioms like sliders, pie menus, and
drag-and-drop are also applicable to RWGUIs with the Field-
Mouse, but new varieties of idioms should be invented for
RWP. As seen in the evolution of GUIs, once a set of idioms
is established, it is difficult to change even if a better set of
idioms appears. Good idioms for RWP should therefore be
developed from the start.

Simple Authoring Methods
Real-world authoring is one of the most promising applica-
tions of RWP. It is possible to automatically create a fancy
diary just by logging the time and location of a person’s ev-
eryday activities, and if the user could add sounds, pictures,
movies and URLs to the diary, it would become a more at-
tractive “active diary.”

For example, when a person attends a meeting, he can add to
his diary various information like another participant’s URL,
minutes, and memos to his blank diary automatically created
from the log of time and location. When a user visits a city and
looks for a restaurant, he can add to his diary how he found
the restaurant, what it was like, pictures of the food, how he
felt about the restaurant, and the link to the information about
the restaurant.

These diaries are fun to browse at a later time, but if it takes a
great amount of time to author them, very few people would
actually make such diaries. If the authoring can be done
easily by using RWP techniques, meeting minutes will be
ready at the end of the meeting, and fancy photo albums will
be ready just when the user gets home. Methods for fast and
intuitive real-world authoring should be investigated.

Methods for Browsing RWP Programs
Since real-world programs are not represented as texts, it is
difficult to browse them or print them on paper. A simple
augmented reality system for browsing and editing RWPs
will thus be required.

Specification of Space and Time
Specification of space and time is very important in real-world
programming. In the previous examples, maps and clock
panels are used, but a more sophisticated way of specifying
the combination of space and time will be required.

RELATED WORK
A variety of research is going on in the RWIF field, but most
of the developed systems do not support programming or
authoring using real-world data.

Arai’s PaperLink system[1] is one of the first systems that
enables users to define real-world objects like a printed text
as a link to other information or a control button for initi-
ating an action. It works very well for simple interaction
with papers within limited application areas, but complicated
programming is not possible.

Rekimoto’s “Augment-able Reality” system[7] is an attempt
to perform real-world authoring by using a wearable com-
puter. This system can put various information from real and
virtual worlds on a display that can be browsed easily. The
system is useful for authoring static RWIF data, but more
complex programming is not possible.

CONCLUSIONS
We have introduced a new programming paradigm “Real-
World Programming (RWP)” for creating real-world interface
(RWIF) programs using real-world objects. With RWP, users
can control and program various information appliances and
PDAs without using conventional programming languages
on desktop computers. Now that many new devices and in-
teraction techniques are widely available, we should develop
new interface idioms for RWIF and RWP.

REFERENCES
1. Toshifumi Arai, Dietmar Aust, and Scott E. Huson. Paper-

link: A technique for hyperlinking from real paper to elec-
tronic content. InProceedings of the ACM Conference on
Human Factors in Computing Systems (CHI’97), pages 327–
334. Addison-Wesley, April 1997.

2. Ronald T. Azuma. A survey of augmented reality.Presence:
Teleoperators and Virtual Environments, 6(4):355–385, Au-
gust 1997.

3. Alan Cooper.About Face – The Essentials of User Interface
Design. IDG Books, August 1995.

4. Allen Cypher, editor.Watch What I Do – Programming by
Demonstration. The MIT Press, Cambridge, MA 02142, 1993.

5. Hiroshi Ishii and Brygg Ullmer. Tangible Bits: Towards seam-
less interfaces between people, bits and atoms. InProceedings
of the ACM Conference on Human Factors in Computing Sys-
tems (CHI’97), pages 234–241. Addison-Wesley, April 1997.

6. Toshiyuki Masui and Ken Nakayama. Repeat and predict
– two keys to efficient text editing. InProceedings of the
ACM Conference on Human Factors in Computing Systems
(CHI’94), pages 118–123. Addison-Wesley, April 1994.

7. Jun Rekimoto, Yuji Ayatsuka, and Kazuteru Hayashi.
Augment-able reality: Situated communication through phys-
ical and digital spaces. InProceedings of ISWC’98, 1998.

8. Itiro Siio, Toshiyuki Masui, and Kentaro Fukuchi. Real-
world interaction using the FieldMouse. InProceedings of
the ACM Symposium on User Interface Software and Technol-
ogy (UIST’99), page to appear. ACM Press, November 1999.

9. Itiro Siio and Yoshiaki Mima. IconStickers: Converting com-
puter icons into real paper icons. InProceedings of HCI Inter-
national’99, August 1999. to appear.

10. Mark Weiser. Some computer science issues in ubiquitous
computing. Communications of the ACM, 36(7):75–84, July
1993.


