- 著者
- John J. Grefenstette
- 編者
- Lawrence Davis
- タイトル
- Incorporating Problem Specific Knowledge into
Genetic Algorithm
- 書籍
- Genetic Algorithms and Simulated Annealing
- ページ
- 42-60
- 日時
- 1987
- 出版
- Morgan Kaufmann Publishers
- 概要
- Like other weak methods, Genetic Algorithms (GA's)
are applicable to a broad range of problems for
which very little prior knowledge is available.
However, many opportunities exist for incorporationg
available problem specific heuristics into GA-based
systems. This paper explores some of these
opportunities in the context of the traveling
salesperson problem. In particular, several
heuristic methods for population initialization,
crosover and mutation are discussed and empirical
comparisons are presented.
- コメント
- ヒューリスティックを使って初期値をきめるとバリエーショ
ンが小さくなるのでまずい。クロスオーバーやミューテー
ションはアプリケーション毎に工夫するのがよい。最終的
に良い結果を得るにはGAで得られた結果にローカル最適化
手法を適用するのがよい。
- カテゴリ
- GA
Category: GA
Chapter: 4
Comment: ヒューリスティックを使って初期値をきめるとバリエーショ
ンが小さくなるのでまずい。クロスオーバーやミューテー
ションはアプリケーション毎に工夫するのがよい。最終的
に良い結果を得るにはGAで得られた結果にローカル最適化
手法を適用するのがよい。
Abstract: Like other weak methods, Genetic Algorithms (GA's)
are applicable to a broad range of problems for
which very little prior knowledge is available.
However, many opportunities exist for incorporationg
available problem specific heuristics into GA-based
systems. This paper explores some of these
opportunities in the context of the traveling
salesperson problem. In particular, several
heuristic methods for population initialization,
crosover and mutation are discussed and empirical
comparisons are presented.
Bibtype: InBook
Booktitle: Genetic Algorithms and Simulated Annealing
Author: John J. Grefenstette
Pages: 42-60
Title: Incorporating Problem Specific Knowledge into
Genetic Algorithm
Editor: Lawrence Davis
Year: 1987
Publisher: Morgan Kaufmann Publishers